Customer Segmentation with R

Deep dive into flexclust

Jim Porzak
Data Science for Customer Insights
useR! 2015
Aalborg, Denmark
July 1, 2015
Outline

1. Why and how to segment?
2. Segmenting “binary choice” surveys.
3. flexclust deep dive.
5. Picking the “best” number of clusters.
6. Wrap-up.

Appendix has real-world examples, references, and links to learn more.
Customer Segmentation Themes

<table>
<thead>
<tr>
<th>Strategic</th>
<th>How Used?</th>
<th>Tactical</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Level?</td>
<td>Detailed</td>
</tr>
<tr>
<td>Long</td>
<td>Time Constant?</td>
<td>Short</td>
</tr>
<tr>
<td>Simple</td>
<td>Implementation?</td>
<td>Complex</td>
</tr>
<tr>
<td>1x Huge</td>
<td>Impact (if correct)?</td>
<td>Σ(Small)</td>
</tr>
</tbody>
</table>
How to Segment?

"We've broken your list into eighty-four subgroups. Our work here is done."

DS4CI.org
Many Segmentation Methods!

Today’s Focus: Binary choice surveys

- Simplest of surveys to design & take.
- Cluster analysis is a great tool to understand how respondents fall into natural segments
- Methods also apply to any binary choice behavioral data sets.

For examples of other segmentation methods see archives at DS4CI.org.
Today’s Example Data Set

The *volunteers* data set from the flexclust package.

1415 Australian volunteers responded to the survey which had 19 preference check boxes for motivations to volunteer. The question could look like:

Q5. Please check all motivations that apply to you:

- meet.people
- no.one else
- example
- socialise
- help.others
- give.back
- career
- lonely
- active
- community
- cause
- faith
Segmenting Binary Choice Data

- “Pick all that apply” type question.
 - Not picking is not the opposite of picking an attribute.
 - (item checked) \(\Leftrightarrow\) NOT (item unchecked)

- *Totally unsupervised*. We only specify the number of clusters we want.

- Two *necessary criteria* for a “good” solution:
 1. The cluster solution is stable
 - Repeatable with different random starts
 2. The segments make sense to the business
 - Believable story AND is actionable AND has anticipated impact.
Tool we use: flexclust by Fritz Leisch

- Allows different distance measures
 - In particular, the Jaccard distance which is suited for binary survey data or optional properties lists.
 - 1 is a “yes” to the question - it is significant.
 - 0 is a “does not apply” – not opposite of “yes”
- Predict(kcca_object, newdata) to segment new customers.
- Additionally flexclust has very good diagnostic and visualization tools. As an R package, it leverages the rest of the R ecosystem.
Simple flexclust Run (1 of 2)

Set up input to flexclust:

```r
library(flexclust)
data("volunteers")
vol_ch <- volunteers[-(1:2)]
vol.mat <- as.matrix(vol_ch)
```

Set up the parameters:

```r
fc_cont <- new("flexclustControl")  ## holds "hyperparameters"
fcc_cont@tolerance <- 0.1
fc_cont@iter.max <- 30
fc_cont@verbose <- 1  ## verbose > 0 will show iterations
fc_family <- "ejaccard"  ## Jaccard distance w/ centroid means
```

Invoke kcca(): “k-centroid cluster analysis”

```r
fc_seed <- 577  ## Why we use this seed will become clear below
num_clusters <- 3  ## Simple example - only three clusters
set.seed(fc_seed)
vol.cl <- kcca(vol.mat, k = num_clusters, save.data = TRUE,
               control = fc_cont, family = kccaFamily(fc_family))
```
Simple flexclust Run (2 of 2)

First few iterations:

1 Changes / Distsum : 1415 / 951.9513
2 Changes / Distsum : 138 / 997.9507
3 Changes / Distsum : 39 / 998.6126

Results:

```r
summary(vol.cl)
## kcca object of family 'ejaccard'
## call:
## kcca(x = vol.mat, k = num_clusters, family = kccaFamily(fc_family),
##     control = fc_cont, save.data = TRUE)
##
## cluster info:
## size  av_dist  max_dist separation
## 1    1078 0.6663440 1.0000000 0.6455246
## 2    258 0.7388715 1.0000000 0.6568168
## 3    79 0.8962851 0.9569892 0.8284482
##
## no convergence after 30 iterations
## sum of within cluster distances: 979.7542
```
Each respondent plotted against the first two principal components of data. Color is cluster assignment.

Centroid of each cluster. A thin line to other centroid indicates better separation (in real problem space)

Solid line encloses 50% of respondents in cluster; dotted 95%.

Also known as “neighborhood plot.”

Purpose: Help business partners visualize clusters and how respondents fall within cluster boundaries. IOW, are clusters “real”?

```r
vol.pca <- prcomp(vol.mat) ## plot on first two principal components
plot(vol.cl, data = vol.mat, project = vol.pca, main = . . . )
```

vol.pca <- prcomp(vol.mat) ## plot on first two principal components
plot(vol.cl, data = vol.mat, project = vol.pca, main = . . .)
Segment Profile Plot

```
barchart(vol.cl, strip.prefix = "#", shade = TRUE, layout = c(vol.cl@k, 1), main = . . .)
```

Purpose: Help business partners translate clusters into segment stories. IOW, describe the clusters in business friendly terms.
So far: we’ve used standard flexclust techniques.

See appendix for references and links.

Now, we’ll address three practical issues:

1. Different starting seeds will number ~ equal clusters differently. The numbering problem.

2. Different starting seeds will result in quite different clusters. The stability problem.

3. There is no automatic way to pick optimum k. The “best” k problem.
The Numbering Problem

Two different seeds have nearly equal solutions, but are labeled differently:

```
fc_reorder {CustSegs}
Reorder clusters in a kcca object.
Usage: fc_reorder(x, orderby = "decending size")
```
The Stability Problem

Three different seeds have quite different solutions:

We need a simple way to classify each solution – just use sizes of two biggest clusters:
Simple Method to Explore Stability

- For a given k, run a few hundred solutions (incrementing seed each time):
 - Re-order clusters in descending size order
 - Save: k, seed, cluster #, & count
- Call Size_1 the count for 1st cluster;
 Size_2 the count for 2nd cluster.
- Scatter plot w/ 2D density curves: Size_2 x Size_1
- Solve for peak location
Stability Plot of kcca Solutions for k=3

fc_rclust {CustSegs}
Generate a List of Random kcca Objects.
Usage: fc_rclust(x, k, fc_cont, nrep = 100, fc_family, verbose = FALSE, FUN = kcca, seed = 1234, plotme = TRUE)
The “Best” k Problem

Generate stability plots for $k = 2, 3, \ldots, 10$:

K=8 is smallest k with single peak is “best” stable solution. We must also validate segment stories are the “best.”
Segment Separation for “best” $k = 8$ (seed = 1333)
One Segment Story (k = 8, seed = 1333)
What We Covered

- Customer segmentation background.
- Deep dive into using flexclust on “binary choice” type data
 - Example kcca() run
 - The numbering problem.
 - The stability problem
 - Provisional rule-of-thumb that “best” k is min(k, for single peak contours)
- Next Steps
 - Get typical respondent(s) closest to each centroid.
 - Respondent flow plot between segments.
- Jim@DS4CI.org

Questions? Comments?
Now is the time!

DS4CI.org
References

Flexclust details – start here:

Application to marketing – start here:

Dolnicar, S. A review of data-driven market segmentation in tourism, Faculty of Commerce - Papers(2002)

For all of Sara and Fritz’s work see:
http://works.bepress.com/sdolnicar/doctype.html#other
Learning More

- Jim’s CustSegs package development at https://github.com/ds4ci/CustSegs

- Tenure based segmentation & subscription survival
 - Subscription Survival for Fun & Profit: https://ds4ci.files.wordpress.com/2013/05/paw_sf2012_subscriptionsurvivalforfunandprofit.pdf

- RFM based segmentation
 - Workshop at N Cal DMA lunch group https://ds4ci.files.wordpress.com/2015/03/rfmb_dmanc_200905201.pdf
 - Also has sample data set & flexclust example

- Customer Classification
 - See above useR! 2008 workshop for details on flexclust

- Jim’s Archives www.ds4ci.org/archives

- Contact: Jim@DS4CI.org
A couple of real world examples
Example 1 – Survey Responses

- 20k respondents to technical product use survey
- 35 check boxes or radio buttons
 - None are required, coded as binary responses
- Goal: come up with “a few” segments which can be used to segment new respondents for follow up sales actions.
- 5-cluster solution: OS loyalists, Other brand responders, Other brand non-responders, Students
- See https://ds4ci.files.wordpress.com/2013/05/paw_09-sun-microsystems-case-study.pdf
Example 1 - The 5-cluster solution

The 20k subjects plotted over the first two principal components:

The 5 clusters showing distribution of responses to each question:

Av Dist = 0.71212, k = 5

DS4CI.org
Example 2 – Business Attributes

- ~1k respondents to “nature of your business” survey
- 62 check boxes or radio buttons
 - In six topics
 - Some are required
 - Coded as binary responses
- Goal: come up with “a few” segments to characterize the fundamental nature of the on-line business.
- 6-cluster solution: Enterprise, Freemium, Marketplace, Ads/Leadgen, Ecommerce, SAAS.
Example 2 – the 6-cluster solution