Using R for Customer Analytics

A Practical Introduction to R for Business Analysts

Loyalty Matrix

April 2006

Loyalty Matrix, Inc.
580 Market Street
Suite 600
San Francisco, CA 94104
(415) 296-1141
http://www.loyaltymatrix.com
Outline

• Introduction:
 – What is "customer analytics" and why do we do it?
 – Specific Loyalty Matrix tools & biases.
 – Implications of working in a business environment.
• Part I - Getting Started: A Brief review of what needs to be done before serious analysis can start.
 – Sourcing business requirements.
 – Sourcing raw data.
 – Profiling raw data.
 – Data quality control & remediation.
 – Staging data for analysis.
• Part II - EDA and Basic Statistics: A Step-by-step look at basic customer data with three important variations of the usual business model.
 – The fundamentals: counts, amounts and intervals.
 – The geographical view.
 – Subscription businesses.
 – Hospitality businesses.
 – Big ticket businesses.
• Part III - Mining, Modeling, Segmentation & Prediction: An overview of some useful packages for advanced customer analytics.
 – Decision tree methods - rpart, tree, party and randomForest.
 – Survival methods - survival and friends
 – Clustering methods - mclust, flexclust.
 – Association methods - arules.
• Conclusion:
 – Review of applicable methods by type of client.
 – The customer analytics check list.

Note: For R setup details see first Appendix slide.
What is “Customer Analytics”?

Customer analytics exploit customer behavioral data to identify unique and actionable segments of the customer base. These segments may be used to increase targeting methods. Ultimately, customer analytics enable effective and efficient customer relationship management. The analytical techniques vary based on objective, industry and application, but may be divided into two main categories.

Segmentation techniques segment groups of the customer base that have similar spending and purchasing behavior. Such groups are used to enhance the predictive models as well as improve offer and channel targeting.

Predictive models predict profitability or likelihood and timing of various events based on typical customer behavior and deviations from that behavior.

-- Roman Lenzen, DM Review Magazine, June 2004
Why we do Customer Analytics.

If we understand our customers better, we can serve them better.

When we serve our customers better, they will help us be successful.
Background on Loyalty Matrix

- Provide customer data analytics to optimize direct marketing resources
- OnDemand platform MatrixOptimizer® (version 3.2)
- Over 20 engagements with Fortune 500 clients
- Experienced team with diverse skills & backgrounds
- 15-person San Francisco firm with an offshore team in Nepal
MatrixOptimizer®: Architecture Overview

Database & ETL: MS-SQL Server
- MO Stage
- Stage-to-Load ETL Processes
- MO Load
- Load-to-Mart ETL Processes
- MO Mart

OLAP*: Microsoft Analysis Services
- Segmentation Cubes
- Campaign Cubes
- Subscription Cubes
- Attrition Cubes

Visualization: Openi web application
- Service Connectors
- Report Definitions
- User Interface

Statistics & Data Mining: R
- Response Models
- LTV Models
- AL-Risk Models
- Segmentation Models
- Campaign Lift Models
- Marketing Mix Models
- Plots for EDA
 - Box, Scatter, Mosaic, Association, Pairs, Response, Survival, etc.
- Models for Prediction
 - Regression, Decision Trees, Random Forest, Linear Models, Additive Models

Security
- Java EE Application Server

* RDL: Report Definition Language

MatrixOptimizer® Architecture
March 2006
Copyright © 2006, Loyalty Matrix, Inc.

FTP, External Media
Marketing Data from Client
Marketing Insights
Implications of Business Environment

- It’s a Windows / Office world
- Focused Inquiries
- Large N
- Business Interpretation is Essential
- Rigor unexpected & unappreciated
 - Up to you to supply & enforce
A Brief review of what needs to be done before serious analysis can start.

- Sourcing business requirements.
- Sourcing raw data.
- Profiling raw data.
- Data quality control & remediation.
- Staging data for analysis.
Sourcing Business Requirements

- Most Important Step!
- What are the real business issues?
 - Not what analyses to perform
 - Not immediate concerns of your individual client
 - The BIG business issue driving project
- How will success of project be measured?
 - Some Key Performance Indicators (KPI’s)
 - Measure baseline values before starting
 - Ensure KPI’s can be calculated
 - Get management signoff at onset
- Ensure everyone agrees on key requirements
Sourcing Raw Data

• Is data available to answer business questions?
 – Don’t believe the data structure diagram

• Translating between Marketing & IT
 – As an outsider, you are allowed stupid questions

• Get lowest level of detail
 – Not always feasible, but try for it

• BOFF set is typical
 – “Big ol’ Flat File”

• Avoid Excel as file transfer medium at all costs
Profile staged raw data to check assumptions about data made when defining problem

Details in Friday’s talk
Quality Control & Remediation

• Watch out for
 – The Cancellation Event
 • Opt-out Email
 • Canceling club membership
 – Split Identities
 • Consolidating customer records to the individual & household
 – Same Address, similar name, different business key
 – Tracking Movers
 – Magic Values
 • Especially Dates

• Outliers in amounts & counts probably real
 – But need checking

• Limit data to problem(s) at hand
RDBMS Datamart using a Star Schema
- See Ralph Kimball: http://www.kimballgroup.com
- Holds “Analysis Ready” data
Our “MO” Schema’s Two Main Modules

MO Project Wide Definitions
- mo_project
 - mop_id
 - mop_project_name
 - mop_version
 - mop_as_of_date_id
 - mop_src
- mo_codes
 - code_identity

Conformed Dimensions
- date
 - date_id
- time_of_day
 - tod_id

Optional Appends
- psychographic
 - psycho_identity
- firmographic
 - firmo_identity

Housekeeping Tables
- person_score_fact
 - psf_identity
- organization_score_fact
 - osf_identity
- person
 - per_identity
- organization
 - org_identity
- location
 - loc_identity
- address
 - addr_identity
- person_status
 - pstat_identity
- commerce_contact_fact
 - ccf_identity
- commerce_event
 - ce_identity
- contract
 - con_identity
- promotion
 - promo_identity
- product
 - prod_identity
- marketing_contact_fact
 - mcf_identity
- marketing_contact_type
 - mct_identity
- cell
 - cell_identity
- campaign
 - cmpg_identity
- media
 - media_identity
- element
 - elmt_identitty
- psychographic
 - psycho_identity
- firmographic
 - firmo_identity

Common Resources
- Geography
- Geodemographics
- Random

Marketing
- marketing_contact_fact
 - mcf_identity
- per
 - per_identity
- organization
 - org_identity
- location
 - loc_identity
- address
 - addr_identity
- person
 - per_identity
- per_addr
 - per_addr_identity
- per_addr_usage
 - per_addr_usage_identity
- member_score
 - member_score_identity
- member_value
 - member_value_identity
- days_from_start
 - days_from_start_identity
- marketing_contact_type
 - mct_identity
- campaign
 - cmpg_identity
- media
 - media_identity
- element
 - elmt_identitty
- psychographic
 - psycho_identity
- firmographic
 - firmo_identity

Housekeeping Tables
- load_batch
 - lb_identity
- source
 - src_identity

Common Resources
- Geography
- Geodemographics
- Random

MatrixOptimizer
© 2004-2006 Loyalty Matrix, Inc. All rights reserved.
Staging Data for Analysis – Moving to R

• Use RODBC to load directly from datamart

```r
require(RODBC)
cODBC <- odbcConnect("KeyCustomers")  # in Windows: odbcConnect("") works
myQuery <- readChar("../SQL/MyQuery.sql", nchars = 99999)  # use cat(myQuery) to view
MyDataFrame <- sqlQuery(cODBC, myQuery)
# Fix up datatypes, factors if necessary
MyDataFrame$DatePch <- as.Date(MyDataFrame$DatePch)
str(MyDataFrame)
head(MyDataFrame)
```

• Use SQL export & read.table
 – We’ll use read.delim for tutorial (I like tab delimited)

```r
KeyCustomers <- read.delim("Data/KeyCustomers.txt", row.names = "ActNum")
```

• Sampling large data sets
 – RANDOM table trick (two columns: integer identity & runif [0, 9999])

```r
SELECT SUBT_ID, etc...
FROM NewSubscribers ns
JOIN Random r
  ON r.identity_key = ns.SUBT_ID
AND r.random <= 100  -- for 10% sample
```
Practical: First Data Set

- Manufacturer of parts & tools for construction trades
- Direct sales to key accounts
- Summary data set with:
 - Account ID
 - Standard Industrial Classification (SIC) code hierarchy
 - Sales metrics
 - Total $ for Year
 - # Invoices in Year
 - # Different Products in Year
 - Classified by “Potential Size” – created by sales team
 - Mega, Large, Medium, Small, Mini & Unknown

- Business Questions:
 - Does Potential Size classification work?
 - What are SIC differences
• Check setup of R and our editing environment

Version 2.3.0 (2006-04-24)
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> require(RWinEdt)
Loading required package: RWinEdt
[1] TRUE
>

Practical: Getting Started (1 of 2)
Load our first customer dataset

After looking at it with a text editor!

```r
# CIwR_01_setup.R
# Get started by loading, checking & saving Key Customers data
> setwd("c:/Projects/CIwR/R")
> dir()
[1] "CodeArchive" "Data"     "Plots"
> dir("Data")
[1] "KeyCustomers.txt"
>
> KeyCustomers <- read.delim("Data/KeyCustomers.txt", row.names = "ActNum")
> str(KeyCustomers)
'data.frame': 48714 obs. of 10 variables:
$ PotSize  : Factor w/ 6 levels "LARGE","MEDIUM",...:
$ Country : Factor w/ 1 level "USA":
$ IsCore  : Factor w/ 1 level "Core":
$ SIC_Div : Factor w/ 4 levels "Construction",...
$ SIC_Group: Factor w/ 11 levels "Building Construction General Contractors And Oper",...
$ SIC_Name : Factor w/ 43 levels "ARCH/ORNAMENTAL METAL",...
$ PchPctYr : num 0.274 98.082 67.671 0.000 0.000 ...
$ NumInvYr : int 2 60 10 1 1 1 4 1 7 1 ...
$ NumProdYr: int 2 81 22 1 3 1 6 1 5 2 ...
$ DlrsYr  : num 401 31021 6345 643 121 ...
>
> save(KeyCustomers, file = "KeyCustomers.rda")
> dir()
[1] "CodeArchive" "Data"     "KeyCustomers.rda" "Plots"
```
Part II – EDA & Basic Statistics

EDA and Basic Statistics: A Step-by-step look at basic customer data with three important variations of the usual business model.

• The fundamentals:
 – Counts and amounts and intervals.

• The geographical view.

• Subscription businesses.

• Hospitality businesses.

• Big ticket businesses.
Practical: EDA of Key Customers (1)

- Retrieve saved data frame, take a close look

```r
> load("KeyCustomers.rda")
> str(KeyCustomers)
'data.frame': 48714 obs. of 11 variables:
$ PotSize : Factor w/ 6 levels "LARGE","MEDIUM",...: 5 1 2 2 4 4 4 4 2 2 ...
$ Country : Factor w/ 1 level "USA": 1 1 1 1 1 1 1 1 1 ...
$ IsCore : Factor w/ 1 level "Core": 1 1 1 1 1 1 1 1 1 1 ...
$ SIC_Div : Factor w/ 4 levels "Construction",...: 1 1 1 1 1 1 1 1 ...
$ SIC_Group: Factor w/ 11 levels "Building Construction General Contractors And Oper",...: 1 4 4 1 4 4 1 4 4 1 ...
$ SIC_Name : Factor w/ 43 levels "ARCH/ORNAMENTAL METAL",...: 16 11 9 16 40 9 19 18 9 18 ...
$ PchPctYr : num 0.274 98.082 67.671 0.000 0.000 ...
$ NumInvYr : int 2 60 10 1 1 1 4 1 7 1 ...
$ NumProdYr: int 2 81 22 1 3 1 6 1 5 2 ...
$ DlrsYr : num 401 31021 6345 643 121 ...
$ ZIP : chr "33063" "37643" "33569" "22151" ...
```

- Observe following & fix
 - PotSize should be ordered
 - Country & IsCore contribute no information

```r
KeyCustomers$PotSize <- ordered(KeyCustomers$PotSize, levels = c("MEGA", "LARGE", "MEDIUM", "SMALL", "MINI", "UNKNOWN"))
# Also, Country & IsCore are superfluous, remove them from analysis set
KeyCustomers <- subset(KeyCustomers, select = -c(Country, IsCore))
summary(KeyCustomers)
save(KeyCustomers, file = "KeyCustomers2.rda")  ## Save subseted data frame
```
Practical: EDA of Key Customers (2)

- Look at variables, starting with Potential Size

```r
> attach(KeyCustomers)
> table(PotSize)
PotSize
      MEGA LARGE MEDIUM SMALL  MINI UNKNOWN
     541   4288  17214  8227 14705   3739
> barplot(table(PotSize), ylab = "# Customers", main = "Distribution Key Customer Potential Size")
```
Practical: EDA of Key Customers (3)

- Top level of SIC hierarchy shows focus of business

```r
> table(SIC_Div)
SIC_Div
          Construction          Manufacturing
          46017                   1901
          Services  Transportation, Communications, Electric, Gas, And
          725                         71

> barplot(table(SIC_Div), ylab = "# Customers", main = "Distribution Key Customer SIC Divisions")
```
Practical: EDA of Key Customers (4)

- Second level of SIC hierarchy doesn’t plot well

```r
> table(SIC_Group)
SIC_Group
Building Construction General Contractors And Oper 17351
Communications Construction Special Trade Contractors 26625
Electronic And Other Electrical Equipment And Comp Engineering, Accounting, Research, Management, And 30
Fabricated Metal Products, Except Machinery And Tr Heavy Construction Other Than Building Constructio 2041
Lumber And Wood Products, Except Furniture Measuring, Analyzing, And Controlling Instruments; 28
Miscellaneous Repair Services 167

> barplot(table(SIC_Group), xlab = "# Customers", main = "Distribution Key Customer SIC Groups")
```
Practical: EDA of Key Customers (5)

- Let’s try horizontal bars
 - & then put labels in plot area

```r
barplot(sort(table(SIC_Group)), horiz = TRUE, las = 1,
       xlab = "# Customers", main = "Distribution Key Customer SIC Groups")

bp <- barplot(sort(table(SIC_Group)), horiz = TRUE, las = 1,
              xlab = "# Customers", main = "Distribution Key Customer SIC Groups",
              col = "yellow", names.arg = ")
text(0, bp, dimnames(sort(table(SIC_Group)))[[1]], cex = 0.9, pos = 4)
```

![Distribution Key Customer SIC Groups](image)
Practical: EDA of Key Customers (6)

• On to continuous variables - $/Year first
 – Let R do all the work
 > hist(DlrsYr, col = "yellow")

• A couple of interesting things
 – At least one huge customer
 – What’s with “minus money”?
Practical: EDA of Key Customers (7)

- Let’s look at the numbers:

```r
> summary(DlrsYr)  ## look at the #'s
     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
-11670.0    334.2  1126.0   5000.0   3682.0 685200.0
```

- Zoom in on x-axis:

```r
hist(DlrsYr, col = "yellow", breaks = 500,
    xlim = c(min(DlrsYr), 3e4))
```
Practical: EDA of Key Customers (8)

- These are supposed to be “key” customers!
 - Remove those without at least $1/Yr, 1 invoice/Yr, &1 product/Yr

```r
> detach(KeyCustomers)
> KeyCustomers <- subset(KeyCustomers, DlrsYr >= 1 & NumInvYr > 0 & NumProdYr > 0)
> comment(KeyCustomers) <- "Rev3: subset to just customers with positive Dlrs & Nums."
> str(KeyCustomers)
'data.frame': 47845 obs. of 9 variables:
$ PotSize : Ord.factor w/ 6 levels "MEGA"<"LARGE"<...: 4 2 3 3 5 5 5 5 3 3 ...
  <...cut...>
- attr(*, "comment")= chr "Rev3: subset to just customers with positive Dlrs & Nums."
> save(KeyCustomers, file = "KeyCustomers3.rda")
```

- Plot again. Label y-axis & zoom a bit more on x-axis:

```r
hist(DlrsYr, col = "yellow", breaks = 500, xlim = c(min(DlrsYr), 2e4),
     ylab = "# Customers")
```

![Histogram of DlrsYr](image)
Practical: EDA of Key Customers (9)

• Right! Log transform all right tailed stuff.
• Start with $ per Year:

```r
hist(log10(DlrsYr), col = "yellow", ylab = "# Customers",
     xlab = "log10 $ per Year")
hist(log10(DlrsYr), breaks = 50, col = "yellow", ylab = "# Customers",
     xlab = "log10 $ per Year")
```
Practical: EDA of Key Customers (10)

• Let’s add log10 transforms to data frame & save:

```r
log10_DlrsYr <- log10(DlrsYr)
l0g10_NumInvYr <- log10(NumInvYr)
l0g10_NumProdYr <- log10(NumProdYr)
detach(KeyCustomers)
KCComment <- paste("Rev4: adds log transforms to data frame; ",
 comment(KeyCustomers))
KeyCustomers <- cbind(KeyCustomers, log10_DlrsYr, log10_NumInvYr,
 log10_NumProdYr)
comment(KeyCustomers) <- KCComment
save(KeyCustomers, file = "KeyCustomers4.rda")
rm(log10_DlrsYr, log10_NumInvYr, log10_NumProdYr)
attach(KeyCustomers)
```

```r
> str(KeyCustomers)
'data.frame': 47844 obs. of 12 variables:
$ PotSize     : Ord.factor w/ 6 levels "MEGA"<"LARGE"<...: 4 2 3 3 3 ...
$ log10_DlrsYr: num  2.60 4.49 3.80 2.81 2.08 ...
$ log10_NumInvYr: num 0.301 1.778 1.000 0.000 0.000 ...
$ log10_NumProdYr: num 0.301 1.908 1.342 0.000 0.477 ...
- attr(*, "comment")= chr "Rev4: adds log transforms to data frame; Rev3:
subset to just customers with positive Dlrs & Nums."
```

```r
save(KeyCustomers, file = "KeyCustomers4.rda")
```
Practical: EDA of Key Customers (11)

- Remaining two log10 transformed variables:
 - `hist(log10_NumInvYr, breaks = 50, col = "yellow", ylab = "# Customers", xlab = "log10 # Invoices per Year")`
 ![Histogram of log10_NumInvYr](image)

 - `hist(log10_NumProdYr, breaks = 50, col = "yellow", ylab = "# Customers", xlab = "log10 # Products per Year")`
 ![Histogram of log10_NumProdYr](image)
Now let’s look at some interactions with PotSize
– Use boxplot on DlrsYr by PotSize

```r
boxplot(DlrsYr ~ PotSize)
boxplot(DlrsYr ~ PotSize, ylim = c(0, 1e5))
boxplot(DlrsYr ~ PotSize, ylim = c(0, 4e4), notch = TRUE, varwidth = TRUE, col = "yellow")
```
• Again calls out for log transform

```r
boxplot(log10_DlrSyr ~ PotSize, notch = TRUE, varwidth = TRUE, col = "yellow", ylab = "log10 $/Yr", main = "Annual Sales by Potential Size")
```
Practical: EDA of Key Customers (14)

- Boxplot the transforms of the two counts

```r
boxplot(log10_NumInvYr ~ PotSize, notch = TRUE, varwidth = TRUE, col = "yellow", ylab = "log10 $/Yr", main = "# Invoices/Year by Potential Size")
```

![Boxplot of # Invoices/Year by Potential Size](image1)

```r
boxplot(log10_NumProdYr ~ PotSize, notch = TRUE, varwidth = TRUE, col = "yellow", ylab = "log10 $/Yr", main = "# Product/Year by Potential Size")
```

![Boxplot of # Product/Year by Potential Size](image2)
Practical: EDA of Key Customers (15)

- Compute Sales Decile; check against PotSize

```r
iRankCust <- order(DlrsYr, decreasing = TRUE)
SalesDecile[iRankCust] <- floor(10.0 * cumsum(DlrsYr[iRankCust]) / sum(DlrsYr)) + 1
aggregate(DlrsYr, list(SalesDecile = SalesDecile), sum)  ## a cross check
## interesting counts
table(SalesDecile)  ## interesting counts

require(vcd)
mosaicplot(PotSize ~ SalesDecile, shade = TRUE,
    main = "Potential Size by Actual Sales Decile")
```

![Loyalty Matrix](Loyalty Matrix.png)
• Let’s now look at # products by # invoices
 – Simple: `plot(NumInvYr, NumProdYr)`
• We now have a better way – bagplot

 With much thanks to Peter Wolf & Uni Bielefeld!

```r
require(aplpack)
bagplot(NumInvYr, NumProdYr, show.looppoints = FALSE, show.bagpoints = FALSE,
  show.whiskers = FALSE, xlab = "# Invoices/Year", ylab = "# Products/Year",
  main = "Key Customers - # Products by # Invoices")
```
And, again use the log transforms

```
bagplot(log10_NumInvYr, log10_NumProdYr, show.loopponts = FALSE, show.bagpoints = FALSE,
       show.whiskers = FALSE, xlab = "log10(# Invoices/Year)",
       ylab = "log10(# Products/Year)", main = "Key Customers\n# Products by # Invoices")
```
Practical: EDA of Key Customers (19)

- Also Dollars by Number of Invoices

```r
bagplot(log10_NumInvYr, log10_DlrsYr, show.looppoints = FALSE, show.bagpoints = FALSE, show.whiskers = FALSE, xlab = "log10(# Invoices/Year)", ylab = "log10($/Year)", main = "Key Customers
$ by # Invoices")
```
Summary of Key Customers EDA

- Sales department still has a way to go with accounts identified as high “Potential Size“
- Potential fit between log transformed variables
- Pareto’s Rule still works:

```r
> cumsum(table(SalesDecile))/length(SalesDecile)
     1     2     3     4     5     6     7     8     9    10
 0.00222 0.00709 0.01532 0.02803 0.04703 0.07568 0.11933 0.19204 0.33149 1.00000
```
Part III – Mining, Modeling & Segmentation

Mining, Modeling, Segmentation & Prediction: An overview of some useful packages for advanced customer analytics.

- Decision tree methods - rpart, tree, party and randomForest.
- Survival methods - survival and friends
- Clustering methods - mclust, flexclust.
- Association methods - arules.
Random Forests

- Random Forest was developed by Leo Breiman of Cal Berkeley, one of the four developers of CART, and Adele Cutler now at Utah State University.
 - An extension of single decision tree methods like CART & CHAID.
 - Many trees are randomly grown to build the forest. All are used in the final result.

Advantages
- Accuracy comparable with modern machine learning methods. (SVMs, neural nets, Adaboost)
- Built in cross-validation using “Out of Bag” data. (Prediction error estimate is a by product)
- Large number candidate predictors are automatically selected. (Resistant to over training)
- Continuous and/or categorical predicting & response variables. (Easy to set up.)
- Can be run in unsupervised for cluster discovery. (Useful for market segmentation, etc.)
- Free Prediction and Scoring engines run on PC’s, Unix/Linux & Mac’s. (R version)

Versions
- Original Fortran 77 source code freely available from Breiman & Cutler.
 http://www.math.usu.edu/~adele/forests/
- R package, randomForest. An adaptation by Andy Liaw of Merck.
 http://cran.cnr.berkeley.edu/src/contrib/Descriptions/randomForest.html
- Commercialization by Salford Systems.
 http://www.salford-systems.com/randomforests.php
Sample Data from a sports club

Challenge – predict “at-risk” members based on membership usage data & simple demographics

Training & Test data sets provided:
- MemberTrainingSet.txt (1916 records)
- MemberTestSet.txt (1901 records)

Columns:

- MembID (identifier)
- Status = M or C
- Gender
- Age
- MembDays
- NumUses1st30d
- NumUsesLast30d
- TotalUses
- FirstCkInDay
- LastCkInDay
- DaysSinceLastUse
- TotalPaid
- MonthlyAmt
- MilesToClub
- NumExtras1st30d
- NumExtrasLast30d
- TotalExtras
- TotalExtras
- DaysSinceLastExtra
Practical: Prediction with RF (2)

• Getting Started – Load & understand training set

```R
## CIwR_rf.R
require(randomForest)
system.file("c:/Projects/CIwR/R")
dir("Data")

Members <- read.delim("Data/MemberTrainingSet.txt", row.names = "MembID")
str(Members)
```

```R
> str(Members)
'data.frame': 1916 obs. of 17 variables:
$ Status            : Factor w/ 2 levels "C","M": 1 1 1 1 1 1 1 1 1 1 ...$ Gender            : Factor w/ 3 levels "F","M","U": 2 2 1 2 2 1 2 1 1 2 ...$ Age               : int  21 18 21 21 45 25 21 20 35 15 ...$ MembDays          : int 92 98 30 92 31 249 1 92 322 237 ...$ NumUses1st30d     : int  11 11 3 6 24 2 0 16 12 6 ...$ NumUsesLast30d    : int  6 6 3 1 24 0 0 4 0 0 ...$ TotalUses         : int 28 31 3 9 24 6 0 30 38 26 ...$ FirstCkInDay      : Factor w/ 556 levels "", "2004-01-04", ...: 132 264 140 157 507 151 1 124 234 319 ...$ LastCkInDay       : Factor w/ 489 levels "", "2004-01-15", ...: 134 242 83 145 414 111 1 121 280 356 ...$ DaysSinceLastUse  : int 3 2 9 11 4 196 NA 12 138 65 ...$ TotalPaid         : int 149 136 100 129 75 134 138 149 582 168 ...$ MonthlyAmt        : int NA NA NA NA NA 31 30 NA NA 10 ...$ MilesToClub       : int 4 0 0 5 2593 4 5 4 NA 2 ...$ NumExtras1st30d    : int 0 0 0 0 0 0 0 0 1 0 ...$ NumExtrasLast30d   : int 0 0 0 0 0 0 0 0 0 0 ...$ TotalExtras       : int 0 0 0 0 0 0 0 6 0 ...$ DaysSinceLastExtra: int NA NA NA NA NA NA NA 253 NA ...
```
Practical: Prediction with RF (3)

```r
> summary(Members)

<table>
<thead>
<tr>
<th>Status</th>
<th>Gender</th>
<th>Age</th>
<th>MembDays</th>
<th>NumUses1st30d</th>
<th>NumUsesLast30d</th>
<th>TotalUses</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: 809</td>
<td>F: 870</td>
<td>Min.</td>
<td>13.00</td>
<td>Min. : 0.0000</td>
<td>Min. : 0.0000</td>
<td>Min. : 0.00</td>
</tr>
<tr>
<td>M: 1107</td>
<td>M: 832</td>
<td>1st Qu.</td>
<td>92.00</td>
<td>1st Qu.: 1.000</td>
<td>1st Qu.: 0.000</td>
<td>1st Qu.: 3.00</td>
</tr>
<tr>
<td>U: 214</td>
<td></td>
<td>Median</td>
<td>29.00</td>
<td>Median : 4.000</td>
<td>Median : 0.000</td>
<td>Median : 12.00</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>32.72</td>
<td>Mean : 247.8</td>
<td>Mean  : 5.385</td>
<td>Mean  : 2.125</td>
<td>Mean  : 26.73</td>
</tr>
<tr>
<td></td>
<td>3rd Qu.</td>
<td>40.00</td>
<td>3rd Qu.: 365.0</td>
<td>3rd Qu.: 8.000</td>
<td>3rd Qu.: 3.000</td>
<td>3rd Qu.: 33.00</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>82.00</td>
<td>Max. : 668.0</td>
<td>Max. : 36.000</td>
<td>Max. : 26.000</td>
<td>Max. : 340.00</td>
</tr>
<tr>
<td></td>
<td>NA's</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FirstCkInDay</th>
<th>LastCkInDay</th>
<th>DaysSinceLastUse</th>
<th>TotalPaid</th>
<th>MonthlyAmt</th>
<th>MilesToClub</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-06-01: 10</td>
<td>2005-10-28: 56</td>
<td>Min. : 1.00</td>
<td>Min. : 0.00</td>
<td>Min. : 4.00</td>
<td>Min. : 0.00</td>
</tr>
<tr>
<td>2004-06-23: 10</td>
<td>2005-10-27: 55</td>
<td>Median : 32.00</td>
<td>Median : 135.00</td>
<td>Median : 28.00</td>
<td>Median : 3.00</td>
</tr>
<tr>
<td>2004-11-01: 10</td>
<td>2005-10-30: 52</td>
<td>Mean : 75.51</td>
<td>Mean : 188.75</td>
<td>Mean : 28.50</td>
<td>Mean : 24.40</td>
</tr>
<tr>
<td>2005-02-01: 10</td>
<td>2005-10-29: 42</td>
<td>Min. : 106.00</td>
<td>Min. : 232.25</td>
<td>Min. : 35.00</td>
<td>Min. : 7.00</td>
</tr>
<tr>
<td>2004-09-13: 9</td>
<td>2005-10-23: 20</td>
<td>Max. : 624.00</td>
<td>Max. : 961.00</td>
<td>Max. : 94.00</td>
<td>Max. : 2609.00</td>
</tr>
<tr>
<td>(Other) :1631</td>
<td>(Other) :1428</td>
<td>NA's : 236.00</td>
<td>NA's : 536.00</td>
<td>NA's : 202.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NumExtras1st30d</th>
<th>NumExtrasLast30d</th>
<th>TotalExtras</th>
<th>DaysSinceLastExtra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 0.0000</td>
<td>Min. : 0.0000</td>
<td>Min. : 0.0000</td>
<td>Min. : 2.00</td>
</tr>
<tr>
<td>1st Qu.: 0.0000</td>
<td>1st Qu.: 0.0000</td>
<td>1st Qu.: 0.0000</td>
<td>1st Qu.: 55.25</td>
</tr>
<tr>
<td>Median : 0.0000</td>
<td>Median : 0.0000</td>
<td>Median : 0.0000</td>
<td>Median : 195.00</td>
</tr>
<tr>
<td>Mean : 0.4128</td>
<td>Mean : 0.9603</td>
<td>Mean : 1.324</td>
<td>Mean : 229.85</td>
</tr>
<tr>
<td>3rd Qu.: 0.0000</td>
<td>3rd Qu.: 0.0000</td>
<td>3rd Qu.: 0.0000</td>
<td>3rd Qu.: 376.00</td>
</tr>
<tr>
<td>Max. : 13.0000</td>
<td>Max. : 14.0000</td>
<td>Max. : 121.000</td>
<td>Max. : 660.00</td>
</tr>
<tr>
<td>NA's : 1646.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

• Absolute Dates not useful (at least down to day level)
• RF does not like NA’s!
 • Day’s Since Last xxx is NA when no event, use large # days
 • Impute remaining NA’s
Practical: Prediction with RF (4)

- Subset out the absolute dates:
  ```r
  Members <- subset(Members, select = -c(FirstCkInDay, LastCkInDay))
  ```

- Replace days since last NA’s with 999:
  ```r
  Members$DaysSinceLastUse[is.na(Members$DaysSinceLastUse)] <- 999
  Members$DaysSinceLastExtra[is.na(Members$DaysSinceLastExtra)] <- 999
  ```

- Impute remaining NA’s with Random Forests’ impute:
  ```r
  Members <- rfImpute(Status ~ ., data = Members)
  ```

```r
> summary(Members)
Status  Gender   Age  MembDays NumUses1st30d NumUsesLast30d TotalUses DaysSinceLastUse
  C: 809   F:870   Min.  :13.00   Min.  : 1.00   Min.  :0.0000   Min.  :0.0000   Min.  : 0.00   Min.  :1.00
  M:1107 M:832   1st Qu.:23.00   1st Qu.:92.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:3.00   1st Qu.:9.00
   U:214 Median :29.00   Median :220.00   Median :4.0000   Median :0.0000   Median :12.00   Median :47.00
   Mean :32.71   Mean :247.80   Mean :5.3850   Mean :0.4128   Mean :26.73   Mean :189.30
  3rd Qu.:40.00   3rd Qu.:365.00   3rd Qu.:8.0000   3rd Qu.:3.0000   3rd Qu.:33.00   3rd Qu.:372.00
   Max. :82.00   Max. :668.00   Max. :36.0000   Max. :14.0000   Max. :340.00   Max. :999.00

Status  TotalPaid MonthlyAmt MilesToClub NumExtras1st30d NumExtrasLast30d TotalExtras DaysSinceLastExtra
  C: 809   Min. : 0.00   Min. : 4.00   Min. : 0.0000   Min. : 0.0000   Min. : 0.0000   Min. : 0.00   Min. : 2.00
  M:1107  1st Qu.:70.75   1st Qu.:24.00   1st Qu.: 1.00   1st Qu.: 0.0000   1st Qu.: 0.0000   1st Qu.: 0.00   1st Qu.: 999.0
   U:214 Median :135.00   Median :29.00   Median : 4.0000   Median : 0.0000   Median : 0.0000   Median : 0.00   Median : 999.0
   Mean :188.75   Mean :28.91   Mean : 26.4760   Mean : 0.4128   Mean : 0.0963   Mean : 1.3240   Mean : 890.6
  3rd Qu.:232.25   3rd Qu.:33.63   3rd Qu.: 8.4266   3rd Qu.: 0.0000   3rd Qu.: 0.0000   3rd Qu.: 0.00   3rd Qu.: 999.0
   Max. :961.00   Max. :94.00   Max. :2609.00   Max. :13.0000   Max. :14.0000   Max. :131.00   Max. :999.00

> 
```
Practical: Prediction with RF (5)

- Now we can build a forest!
 - ntree = 500 & mtry = 3 are defaults. Try tuning them.

```r
> Members.rf <- randomForest(Members[-1], Members$Status, data = Members,
  mtry = 3, ntree = 500, importance = TRUE, proximity = TRUE)
> Members.rf
Call:
  randomForest(x = Members[-1], y = Members$Status, ntree = 500,
               mtry = 3, importance = TRUE, proximity = TRUE, data = Members)

  Type of random forest: classification
  Number of trees: 500
  No. of variables tried at each split: 3

  OOB estimate of  error rate: 21.4%
  Confusion matrix:
     C   M class.error
     C 546 263 0.3250927
     M 147 960 0.1327913

- Rather good results. Only ~20% overall error rate.
  - 33% false positive
  - 13% false negative
Practical: Prediction with RF (6)

- **RF Diagnostics - OOB errors by # trees**
  - Plot(Members.rf)
Practical: Prediction with RF (7)

- **MDS Plot**
  
  $\text{MDSplot}($Members.rf, Members$Statue, k = 3)$
Practical: Prediction with RF (8)

- RF Diagnostics – Variable Importance Plot
  - `varImpPlot(Members.rf)`
Practical: Prediction with RF (9)

- RF Diagnostics – Partial Dependence 1
  - `partialPlot(Members.rf, Members[-1], MembDays)`
  - `abline(h=0, col = "blue")`
Practical: Prediction with RF (10)

- RF Diagnostics – Partial Dependence 2
  - `partialPlot(Members.rf, Members[-1], DaysSinceLastUse)`
  - `abline(h=0, col = "blue")`
Practical: Prediction with RF (11)

- RF Diagnostics – Partial Dependence 3
  - `partialPlot(Members.rf, Members[-1], Age)`
RF Diagnostics – Prediction on Test Set
– Need to do same variable selection & conditioning:

```r
Predictions on test set should be ~ OOB errors
MembersTest <- read.delim("Data/MemberTestSet.txt", row.names = "MembID")
str(MembersTest)
summary(MembersTest)
MembersTest <- subset(MembersTest, select = -c(FirstCkInDay, LastCkInDay))
MembersTest$DaysSinceLastUse[is.na(MembersTest$DaysSinceLastUse)] <- 999
MembersTest$DaysSinceLastExtra[is.na(MembersTest$DaysSinceLastExtra)] <- 999
MembersTest <- rfImpute(Status ~ ., data = MembersTest)
save(MembersTest, file = "MemberTestSetImputed.rda")
MembersTest.pred <- predict(Members.rf, MembersTest[-1])

> ct <- table(MembersTest[[1]], MembersTest.pred)
> cbind(ct, class.error = c(ct[1,2]/sum(ct[1,]), ct[2,1]/sum(ct[2,])))
 C M class.error
C 511 295 0.3660050
M 144 951 0.1315068

> (ct[1, 2] + ct[2, 1]) / length(MembersTest$Status) ## Test Set Error
[1] 0.2309311
```
Practical: Prediction with RF (10)

• Need a score? Count the trees.

```r
AtRiskScore <- floor(9.99999 * Members.rf$votes[, 1]) + 1
barplot(table(AtRiskScore), col = "yellow",
 ylab = "# Members", main = "Distribution of At-Risk Scores")
```
Random Forest Summary

• Has yielded practical results in number of cases
• Minimal tuning, no pruning required
• Black box, with interpretation
• Scoring fast & portable
Look at Examples

• Questions before we move on?
Questions? Comments?

- Email JPorzak@LoyaltyMatrix.com
- Call 415-296-1141
- Visit http://www.LoyaltyMatrix.com
- Come by at:
  580 Market Street, Suite 600
  San Francisco, CA 94104
R Setup for Tutorial

This is the setup I will be using during the tutorial, you may, of course, change OS, editor, paths to match your own preferences.

- Windows XP SP1 on 2.5GHz P4 w/ 1G RAM.
- R Version 2.3.0
- RWinEdt & WinEdt V5.4 or JGR
- Following packages will be used
  - RWinEdt, aplpack, vcd, survival
- Directory Structure
  - R’s working directory & source code: C:\Projects\CIwR\R
  - Tutorial data loaded in: C:\Projects\CIwR\R\Data
  - Plots will be stored in: C:\Projects\CIwR\R\Plots
- Other tools I like to use
  - TextPad: www.TextPad.com
  - DbVisualizer: http://www.dbvis.com/products/dbvis/
R Resources

- R & CRAN
- R Wiki
- Reference Cards
Out Takes

- Following outtakes & works in progress