
Large Data Methods:
Keeping it Simple on the Path to Big Data

Big Data Business Forum,

San Francisco, November 13, 2012

Jim Porzak, Sr. Dir. Business Intelligence, Minted

1

What we will cover:

1. Who is Minted?

2. Our large data challenges.

3. Large data solutions.

4. Migration to “big data.”

5. Discussion

2

• A social commerce site.

• Crowd-sourcing graphic designs

and art from a global design

community.

• Selling those as printed paper

products.

• Initially focused on the $10 billion

stationery and $48 billion art

markets.

• Combining community with

commerce.

• Built on stellar technology,

operations, and customer service.

3

About Minted

~ Classic LAMP

Integrated back office: “MBO”

MySQL holds site & MBO data

4

Minted.com Architecture

On Amazon EC2:

• Replicated MySQL site DB

• PostgreSQL BI DB

• Tableau Server

5

Minted BI Architecture

Our job is to understand…

the customer,

the whole customer, and

nothing but the customer.

6

In support of marketing:

CIA
7

C ustomer

I nitiated

A ctions

8

CIA’s are:

• Ordering

• Other Minted.com actions

• Responding to Minted outreach

• Email opens, reads, clicks

• Contacting Minted

• Social Behavior

• And more!

9

Ordering:

“How do you sell bread?”

1. “You tell me what you want.”

2. “I give you the bread.”

3. “I tell you how much it costs.”

4. “You give me the money.”

10

11

1. Google Analytics

• Not for individual visitor!

• f(tagging(t))

2. “App-request” logs

• CIA’s & some 2nd level

• Visitor (cookie) & user ID’s

• 12 months of history

12

Other Site CIA’s

13

Responses to email:

1. Sends

• Transactional: order ack, ship, …

• Marketing: retention, offers
• Targeted & personalized

2. CIA’s

• Bounce, open, click, buy

• Opt-outs, opt-ins

• Convertro

• Survey Tools

• Demographic Appends

14

Other data sources:

• Large Data:

• PostgreSQL

• Big Data:

• Some columnar DB

• Bigger Data:

• Some map-reduce platform

15

Roadmap to “Big Data”

• Open source (~free)

• SQL for analytics

• Window functions, etc.

• Known to scale

• Foundation for many of the

columnar DB products

16

Why PostgreSQL?

• Data structures as if columnar

• Big & wide; not star

• Focus on high impact first:

• Orders

• Order Detail

• Customers

• Site Sessions

17

BI in PostgreSQL philosophy

18

Primary wide tables

• Customer: 35 columns

• ID, source, acquisition date/source, purchase profiles, site

profiles, demo profiles

• Order Summary: 72 columns

• ID’s, date, order seq #, gap, $’s, #’s, flags, top, prior, first product

code/group/class, to-date $’s by class, geo, source.

• Order Product Detail: 27 columns

• ID’s, timestamp, SKU, $, #, promo, details of options

• Site Sessions: 27 columns

• ID’s, seq #, # events, duration, timestamps, gap, funnel flags,

products, actions, sources, media, campaigns, …

• Site Clean Events: 21 columns

• ID’s, timestamp, ip, seq #, interval to prior, entry/exit actions,

source/medium/campaign, sku, …

19

Table Details

• Queries off of these tables very fast;

typically sub-minute for even the most

complex.

• Tableau server has internal columnar

engine for interactive analytics

performance.

• Nightly refresh & updates in under

three hours with no attempt at tuning.

20

Performance

• Finalize logical design in PostgreSQL

based on needs of our business

partners over next few months.

• Tune PostgreSQL platform test limits

of scale. Estimate when we will need

to move to next level. In meantime:

• POC’s on a couple of columnar DBs.

• Migrate to final columnar DB.

21

Next Steps:

Now would be the time!

22

Questions? Comments?

APPENDIX

Application request logs – deep dive

23

What’s an app-request log?

{"time_start":1313620339.85,"time_end":1313620340.01,"request":{"headers":[["Host","localhost:8888"],["Connection",

"keep-alive"],["Cache-Control","max-age=0"],["User-Agent","Mozilla\/5.0 (Macintosh; Intel Mac OS X 10_6_8)

AppleWebKit\/534.30 (KHTML, like Gecko) Chrome\/12.0.742.112

Safari\/534.30"],["Accept","text\/html,application\/xhtml+xml,application\/xml;q=0.9,*\/*;q=0.8"],["Accept-

Encoding","gzip,deflate,sdch"],["Accept-Language","en-US,en;q=0.8"],["Accept-Charset","ISO-8859-1,utf-

8;q=0.7,*;q=0.3"]],"method":"GET","remote_addr":"127.0.0.1","protocol":"HTTP\/1.1","uri":"\/register"},"response":{"stat

us":null,"headers":[["Expires","Sun, 19 Nov 1978 05:00:00 GMT"],["Last-Modified","Wed, 17 Aug 2011 22:32:19

GMT"],["Cache-Control","store, no-cache, must-revalidate"],["Cache-Control","post-check=0, pre-check=0"],["Content-

Type","text\/html; charset=utf-8"],["X-Powered-By","PHP\/5.3.2; Qcodo\/0.3.24 (Qcodo Beta 3)"],["Set-

Cookie","minted_tr=UQ%BDn%830%10%7E%17%EF%04%8C%9D41S%D4%A1%EA%90%8C%5D%91%03%26%

B5%0Aq%E5%3B%90h%94w%EF%9D%0BR3%FA%BE%DF%3B%5B%23%B5%B9%83QF4%16EeMa%EE%8F%

F4%9E%5C%14%957%B2%02%B3Oh%0D%7D%40%1E%95%5BEC%29%8D%E8%7C%04%AC%27%0F%3E%01

%B2%D4%3B%BD%D7%07%A9%19%2F%8C%E8%ED%13%AC%A4%DA%95%85%D2%05%C3z%95G%D7%B9

%189%0D%8C%A6%E0%8BC%AB6%83%BF%A1k7M%18%F2f%04%0C%83%FFq1%87%AF1%3F%BD%9F%B3

%E3%DBkv%FA8%B2D%AA%25%E7%BF%0Fe%27%AC%5CC+%8C%B1q%A2%3A%2F%CD%93%E2iH%D4%D

44%C4%1A%E7o%27%96%BDS%F6%9F%29%27%AD%94%86%0C%80%EFU%F2%F9%B6%04%04d%D6e%3D

X%EB%C0_o%EB%88NJ%FEC%CF%0A%C9%8A%17ftv%EC%D3e%0A%26%1C%D6%AE%E9%27H%40.C%C0

O%17%21k%ED%9C%5D%7D%87%90%01Z%F4%81%8C%E7%A5a%DAd%91pC%B0%93%CBHE%1A%A4-

%1E%BF; expires=Mon, 13-Feb-2012 22:32:20 GMT; path=\/"]]}}

24

Making app-requests useful

1. Parse to .csv (Python)

2. Load to BI PostgreSQL DB

3. Clean & more parsing

4. Sessionize

5. Analyze

25

-- get event sequence #s & seconds after prior event

CREATE TABLE v_sessions1 AS

SELECT *,

 ROW_NUMBER() OVER(Members) AS event_seq_number,

 event_at - LAG(event_at) OVER(Members)

 AS interval_to_prior

 FROM v_events

WINDOW Members

 AS (PARTITION BY member_id -- unique member ID

 ORDER BY event_at -- timestamp of event

)

;

26

Sessionization in PostgreSQL

Part 1

-- update with session sequence #

CREATE TABLE v_sessions2 AS

SELECT *,

 COUNT(CASE WHEN interval_to_prior IS NULL OR

 interval_to_prior > '30 minutes'

 THEN 1 ELSE NULL END) OVER(Members)

 AS session_seq_number

 FROM v_sessions1

WINDOW Members

 AS (PARTITION BY member_id -- unique member ID

 ORDER BY event_seq_number -- Session #

)

;

27

Sessionization in PostgreSQL

Part 2

-- now roll up into sessions getting session start, total time in session,

-- site areas explored, other site specific rollups

CREATE TABLE v_sessions AS

SELECT member_id,

 session_seq_number,

 MIN(event_at) AS session_start_at,

 COUNT(*) AS num_events_in_session,

 SUM(CASE WHEN interval_to_prior > '30 minutes'

 THEN NULL ELSE interval_to_prior END) AS session_duration,

 STRING_AGG(DISCRETE site_area, ', ') AS site_areas_visited,

 <other site specific aggregations>

 FROM v_sessions2

 GROUP BY member_id,

 session_seq_number

 ORDER BY member_id,

 session_seq_number

;

28

Sessionization in PostgreSQL

Part 3

How “mining” app-request logs helps us

understand the customer:

1. Sales funnel analysis by product & YOY.

2. Customer’s individual interests, preferences, …

3. Customer’s evolution in relation w/ Minted

4. Usage based customer segments

5. And we will discover more!

29

